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Experiments on the instability of stratified shear flows: 
immiscible fluids 
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When a long rectangular tube containing two immiscible fluids is slightly tilted 
away from the horizontal, a uniformly accelerating flow is produced with shear 
a t  the interface. The presence of shear leads to instability, which is characterized 
by the spontaneous and rapid growth of almost stationary waves if the fluid 
depths are equal and the density difference small. The conditions for the onset of 
Kelvin-Helmholtz instability, taking account of the accelerating flow and the 
presence of a velocity transition region at the interface, are investigated theo- 
retically and comparison made with observations. The time at which instability 
occurs is quite well predicted by this theory, but the wavelength of the unstable 
waves is rather greater than predicted in the accelerating flow. The difference 
between the predictions and observations may be the result of finite amplitude 
effects or of the development of Tollmien-Schlichting instability before Kelvin- 
Helmholtz. 

~ 

1. Introduction 
In  a paper published in 1968, which is hereafter referred to as I, we described 

a technique, fmt used by Osborne Reynolds, to produce a stratified shear flow 
under fully controlled conditions. The flow is produced by tilting a long horizontal 
tube, of rectangular section and completely filled with the stratified fluid, 
through a small angle. In  the uniformly accelerating flow which follows, the 
velocity of the fluid near the centre of the tube is parallel to the tube walls and 
depends on the initial density distribution. This flow is eventually disrupted 
either by the spontaneous growth of waves and a transition to turbulence, or by 
the arrival of surges which develop and propagate from the ends of the tube. 
In  the experiments and theory described in this paper the tank is filled with two 
immiscible fluids, and the density distribution when the tube is first tilted is 

where z is measured normal to the initially horizontal walls of the tube located 
a t  x = - h,, hl (figure 1). At the interface ( x  = 0) there is surface tension, y. 
A theory is developed to predict the onset of instability of the uniformly accelerat- 
ing flow in the tube and the wavelength of the instability. The experiments 
allow some comparison between prediction and observation, and show how the 
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instability develops at  large amplitude well beyond the region of validity of the 
theory. 

FIGURE 1. Notation in the tilted tube. 

The velocity distribution which arises when the tube is tilted is characterized 
by a sharp shear layer at  the interface. In  the absence of viscosity it may easily 
be shown that the velocity, u, parallel to the tube walls up the line of greatest 
slope (the 2 direction) is 

(I, equation (7)), where CL is the angle of inclination of the tube to the horizontal 
and g is the acceleration due to  gravity. The presence of viscosity affects the 
flow near the walls and the interface, but, if instability occurs soon after the tube 
has been tilted (and typically in the experiments it occurs within the first 3 sec) 
the influence of viscosity on most of the velocity profile in the parallel accelerating 
flow is slight. A typical velocity profile is shown in figure 1.  

The spontaneous growth of waves at  a short time after the tube was tilted is 
shown in figure 8 (plate 1) and is described in $3.  The theoretical results derived 
in Q 2 are compared with observations in $3. 

There appear to be two possible instabilities, the Kelvin-Helmholtz and the 
Tollmien-Schlichting, which might account for the first development of waves, 
but we shall discuss here only the former instability. (The various types of in- 
stability have been discussed and classified by Benjamin (1960, 1963) and Lan- 
dahl(1962).) It is quite possible that a Tollmien-Schlichting instability develops 
at  an earlier stage than the Kelvin-Helmholtz,-f and the results therefore place 

f Benjamin (1963) has shown that a Tollmien-Schlichting (class A) instability will 
occur when the velocity difference across the interface is only 1/42 times that necessary 
for the development of Kelvin-Helmholtz (class C) instability, provided that the density 
difference at  the interface is small. The growth rate of the Tollmien-Schliohting instability 
is, however, much less than th t  of the Kelvin-Helmholtz, and i t  is probable that the 
observed instability belongs to the latter category. 
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only an upper bound on the times at  which instability occurs. The maximum 
Reynolds number, based on the displacement thickness of a boundary layer, 
which occurs in the experiments before the onset of instability, is 183, which is 
somewhat below the critical value 575, estimated by Schlichting (see Schlichting 
1955) for the onset of instability on a rigid wall. It would therefore seem that the 
development of Tollmien-Schlichting instability on the walls of the tube is 
unlikely. No similar conclusion can be reached about instability at  the interface, 
which may be characterized by a smaller critical Reynolds number. 

2. Theory 
2.1. Discussion 

The stability of the steady flow of two deep immiscible fluids, each moving in the 
same direction parallel to the interface and each having constant velocity and 
density, the lighter fluid above, was examined theoretically by Kelvin (1871). 
For sufficiently small differences in the velocities above and below the interface, 
there are no growing wave-like disturbances of any wave-number. As the velocity 
difference, AU, is increased, at  first one wave-number, k,, and then a range of 
wave-numbers containing k, become unstable. It was found that the critical 
wave-number 

and the steady velocity difference, AU,, at which instability first occurs is 

kc = J b ( P 2  -P1)/Yl (2.1) 

where p1 is the density of the upper fluid, p2 that of the lower, and y is the inter- 
facial surface tension. 

Holmboe (1962) examined 

with the continuous velocity 

u =  

the stability of an infinite fluid of density 

( 2 . 3 ~ )  

distribution 

(2 .3b )  

but with no surface tension at the interface, and found that there was instability 
over a range of wave-numbers at  each value of the velocity difference, 2U. 

An extension of Holmboe’s work to include the effects of interfacial tension 
yields a critical wave-number but one which is modified by the value of the non- 
dimensional parameter y/[gd2(p, -p l ) ] ,  and this is discussed in detail in 4 2.5. 
Because of the effects of viscosity the flow in the experiments has not the dis- 
continuous profile of (1.2), but changes continuously at  the interface (4 2.4). 
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Although (2.3) does not represent the actual velocity distribution in the experi- 
ments, the results described in 6 2.5 are helpful in assessing the effect of a gradual 
transition in velocity at  the interface on the conditions at  the onset of instability 
and will be used in 3 3. (A far more sophisticated theory is that developed by 
Lock (1954) specifically to examine the generation of water waves at  an airlwater 
interface by the flow of air over water, but it does not appear profitable to modify 
his theory for the present range of quite small density differences, as this would 
involve considerable labour and it is doubtful whether it would substantially 
improve the theoretical estimates of the conditions at  the onset of instability.) 

The development of a stability theory for a viscous accelerating fluid, such 
as we have in the experiments, has not proved possible by analytical methods. 
However, the stability of small disturbances to the flow defined by (1.1) and (1.2) 
have been considered ( 8  2.3); this is equivalent to an examination of the effect of 
acceleration on the flow studied by Kelvin. When this effect has been examined 
(and the presence of boundaries at finite distances) and the effect of a gradual 
transition in the (quasi-steady ) velocity at  the interface assessed, corrections 
may be made to the values of k, and A q  of (2.1) and (2.2) respectively and these 
corrected values compared with the observations. 

2.2. Xteady flow 

Consider a fluid of density given by (1.1) with hl = h, = h, and with the steady 
velocity distribution 

and surface tension y 
interface proportional 
persion relation is 

at  the interface, z = 0. When small disturbances to the 
to exp ( ikz+pt)  are examined, it is found that the dis- 

For a growing disturbance p must contain a real positive part; that is, 

(AU)2 > P*2[yk+i(p2-pl)] tanhkh. 
PlPZ 

For deep fluids the right-hand side of this expression has a minimum at a wave- 
number k = k,, the critical wave-number, when 

k c  = 1/[9(P2-P1)/YI 
and thus the minimum value of the velocity difference for a growing disturbance 
is 

as found by Kelvin, see (2.1), (2.2). 
If now 
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and 

the condition (2.6) becomes 
J 
21 

1 > - (1 + 1 2 )  tanhrl, 

and figure 2 shows the curves of 1 against J for 1 = (J/21) (1 + l a )  tanhrl and 
for various r .  

1-5 - 

0.5 1.0 1.5 2.0 2.5 

I 

FIGURE 2. The variations of J with I at various r (full curves); the variation of the 
maximum J for each r with I (dashed curve); and the variation of maximum J for each 
q with I (dotted curve). 

It will be seen that the non-dimensionalized wave-number, 1,  for which J is 
largest (and therefore AU is least) decreases as r (and therefore h) decreases, but 
that the largest value of J does not vary very much from its value for very large r 
until r < .J 3. Hence the effect of the boundaries is to increase the critical wave- 
number to a value above that for infinite depth, but not to change the critical 
velocity difference substantially, unless 

h < J ~ { Y / ~ ( P ~ - P ~ ) ~ P .  
(The analysis when h takes such small values is inappropriate and a long-wave 
approximation is more suitable.) The dashed curve in figure 2 shows the locus of 
largest J for various r .  If r is known (and it will be imposed by the conditions 
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of the experiments), the corresponding largest J ,  and therefore ACT,, is found, 
and also the corresponding I ,  and therefore k,, is known. 

For deep fluids (r+co) the real part of p may be written 

where q 2  = 12[2/J - (1 + l/Z)]. 

The curve p = 0 is the continuous curve marked r = co in figure 2. The curves 
for p =i= 0 lie below this. The dotted line lying below the curve T = 00 in figure 2 
is the locus of points of the maximum J on the set of curves p = constant. Some 
values of qare marked. This dotted curve indicates the wave-numbers of the 
disturbances which have the largest growth rates for any given value of the 
stability parameter J .  The trend towards higher wave-numbers as J decreases 
shows that unstable flows (for which AU exceeds AK) have a fastest growing 
wave-number which exceeds k,. This result anticipates a similar result which will 
be found for uniformly accelerating flows. 

2.3.  The  eflect of acceleration 

We wish to consider small disturbances to  the basic state given by (1.1) and (1.2). 
The motions in both the upper and lower fluids are started from rest? and are 
therefore irrotational. We can therefore define velocity potentials #l(x, z ,  t ) ,  

V2#i = 0 (i = 1,2)  qLJx, z ,  t )  so that 

and the fluid velocitv is 

where ((x, t )  is the position of the interface at position x measured along the tank 
and at time t and i = (1 ,0 ,0) .  The observed instability is found to be approxi- 
mately two-dimensional (at least when the disturbance is small) and we therefore 
consider only disturbances which are functions independent of y. This assumption 
is justified in appendix B, where it is shown that the most rapidly growing 
disturbance is two-dimensional. The width of the tank is supposed to be large 
and in the experiments is over six times the fluid depths. 

The boundary conditions are that the velocity normal to the tube boundaries 

the kinematic condition a t  the interface 

(2.10) 

(2.11) 

(2.12) (g)j =z+(qi+v#j)v a ( j  = 1,2); where 

t When the tube is suddenly tilted to inclination u no Rayleigh-Taylor instability is 
observed. 



Instability of stratiied shear Jlows 31 

and the condition on the pressures at  the interface 

P1-P2=YIR at z = t ,  (2.13) 

where p1 is the pressure in the upper fluid and p 2  that in the lower, and R is the 
radius of curvature of the interface. The pressure is given by the linearized 
Bernoulli equation 

%+ -(qx)+-+i+U,-+gxsina+gzcosa a a a h  = ~ , ( t )  
Pi at at ax 

(i = 1,2) (2.14) 

(where there is no summation over a repeated suflix). 
The method of solving the linearized form of the equations (2.8)-(2.14) is 

described in detail in appendix A. A solution is found which is periodic in the x 
direction with wave-number k. (A general solution may be found by superposition 
in the usual way.) The solution for the disturbance to the interface E(z, t )  is best 
expressed in the form 

t ( x ,  t )  = g' (N(7)  exp [ i ( k s  + pt2)1}, (2.15) 

where (2.16) 

(2.17) 

and 
N ( r )  satisfies the equation 

= tanhkh,, i = 1,2,  and 9 indicates that the real part is to be taken. 

( a + t r 2 ) N  = 0, (2.18) 
d2N 
dT2 
-- 

Equation (Z.18) is a standard form of the equation for the parabolic cylinder 
function. Two linearly independent solutions, U(a, 7), V(a, T), are known. B'or 
a < 0, as it is here, U is bounded and oscillatory for all r > 0 and tends to zero 
as r tends to infinity, whilst V is oscillatory and bounded for r < 2J(  - a)  and 
increases monotonically for 7 > 2J( -a);  

(2.20) 

as T -+ co, 7 B la/ .  The condition r = 2 J (  -a)  is in fact equivalent to the condition 
in steady flow for the onset of instability. The wave-number k, for the smallest 
r ( = 7,) for which 7 = 2 .J( - a)  is satisfied (and therefore the earliest time t = t ,  
at which r = 2J(  -a ) ) ,  is given by (2.1) if the fluid depths areverylarge, and the 
corresponding velocity difference is given by (2.2). Hence the conditions for the 
onset of instability in a steady flow (that is for the growth of a disturbance of 
some wave-number) also serve as the condition for the first growth of a wave in 
the accelerating flow. 
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However, it is not clear that the wave which will be first observed in the experi- 
ments will have the critical wave-number predicted in 3 2.2. Even ignoring the 
changes in wave-number which may result a t  finite amplitude, the observed 
wave will depend upon the spectrum of the background ‘noise ’ and upon which 
wave-numbers grow most rapidly. There is no information available a t  present 
about the background noise spectrum in the experiments. Before an experiment 
is made, the tube is left in a horizontal position for at least five minutes until 
no motion can be observed. At the start of an experiment one end of the tube is 
raised sharply until it comes into contact with a buffer. The impulse from this 
contact produces some small capillary ripples at  the interface which originate 
a t  the side walls and which disappear rapidly and well before the onset of the 

80 

lo] 

1 2 3 4 

8 

FIGURE 3. The growth of a disturbance; the variation of Bi(s)/Bi(O) with s. 

shear instability. Further experiments are planned to study the growth of a 
known initial disturbance made by producing standing or progressive waves in 
the tube, but we shall suppose here that the noise level is fairly uniform in the 
neighbourhood of the most rapidly growing waves. Even with this rather 
sweeping assumption we are left in a quandary. It is now possible to estimate the 
wave-number of the wave which first increases its amplitude by, say, 10 times, 
but without knowledge of the amplitude of the initial disturbance we cannot tell 
what growth is necessary before the wave becomes visible (or measurable), and 
the first wave to increase its amplitude by 10 times may not be that to increase 
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first by, say, 100 times. We can, however, examine the solution for near 
T = 24( -a)  to see how rapidly wave growth will occur, and to compare the solu- 
tion for the accelerating fluid with that made on a quasi-static approximation, 
and to  see whether the observed wave-number should be greater or less than k, 
predicted in 3 2.2. 

In (2.18) write 
7 = 24(-a)+T1. (2.21) 

Then 

or approximately, if T~ -g 4 4 (  -a), 

(2.22) 

(2.23) 

~ = sN, (2.24) 
d2N 
as2 

which transforms into 

when s = ( - a ) b l .  (2.25) 

This is the equation for the linearly independent Airy functions Ai (s), Bi (s). 
Ai (8)  is a monotonic function decreasing to zero as s .+ 00 whilst Bi (s) is mono- 
tonic increasing to infinity. We are here looking for a growing disturbance and, 
having no knowledge of conditions at  s = 0, will suppose that N(s)  = Bi (s)/Bi (0). 
The curve N(s)  is shown in figure 3. Tenfold growth will have occurred when s is 
approximately 2.46 and 100-fold growth at s equals 3-83, provided that 

13-83( -a)-ll < 14( -a)gl 

so that the conditions for the validity of the approximation are satisfied. The 
approximation made here is satisfied for large values of a, typically when 
I ( - a)OI 1. This condition will be satisfied when sin a! is small, since a contains 
sin a! in its denominator. Numerical comparison of the approximate solution 
(the solution of (2.23)) with the exact solution to (2.18) (based on the tables for 
the parabolic cylinder function given by Abramowitz & Stegun 1965) shows that 
even when J( -a)  is as small as +, the time of 100-fold growth is predicted to 
within 3-5 %. We shall therefore use the approximate solution for comparison 
with observations. 

A comparison of the predicted growth of the disturbance at the interface when 
the fluid is accelerating and that predicted on the assumption that the growth 
rate is at each instant given by (2.5), a quasi-static approximation, is made in 
appendix C. The time at which a disturbance will grow to 100 times its initial 
amplitude is underestimated by less than 10 yo by the quasi-static approximation. 

Growth of disturbances is very rapid once 100-fold growth has been achieved 
(500-fold growth occurs when s = 4-64) and it seems likely that a good estimate 
of the observed wavelength may be given if we use for comparison the wave which 
will first grow to 100 times its initial amplitude. 

3 Fluid Mech. 39 
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Now at 100-fold growth, from (2.21) and (2.25), 

7 = 2( -a)& + 3*83( -a)*, (2.26) 

and with substitution from (2.16) and (2.19) the time at 100-fold growth is 

(2.27) 

where A = [ 

and 

(These variables are the same as those defined in $2.2 but now with reduced 
gravity, g cos a.) 

Y 

3 

2 

1 

1 

0.5 1.0 1.5 2.0 2.5 

B 

FIQUBE 4. The variation of 1 with B for various r 
at the time at which 100-fold growth OCCUTS. 

When B is very small the minimum value oft,,, is given by finding the minimum 
of the first term in the curly brackets in (2.27), and this is exactly the same as 
the problem of finding the maximum J considered in Q 2.2. The non-dimensional 
wave-numbers I for various T are given by the points on the dotted curve in 
figure 2. 
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The minimum value of tlO0, found by differentiating (2.27), occurs when 

(2.28) 
3(Z2 - 1) (1 + 12)3 tanh% rl + 3rZ( 1 + Z2)% tanhP r2 sech2 rZ 

(3 + 5Z2) tanh rZ + rZ( 1 + la )  secha rZ 
B =  

and the corresponding values of 1 and B for various r are shown in figure 4. The 
effect of acceleration is to increase the wave-number of the most rapidly growing 
wave to a value above that predicted by steady flow. For fixed values of r and h, 
the wave-number which first increases its amplitude by one hundred times, klO0, 
increases as B increases and therefore as 01 increases. For 2.3 > B > 0.1, to a good 
approximation the curves r = 3, r = 00 are given by 

I = 1 + 0.86B. (2.29) 

Typical values of r and B in the experiments are 3 and 0.5 respectively, and 
the wave-number kloo may be significantly increased by the effect of acceleration. 
The first wave to increase its amplitude by 100 times for these values of r and B 
corresponds to I = 1-43 (compared with I = 0.95 in the non-accelerating flow) 
and the time of 100-fold growth, tlO0, for this wave is 1-807A. For Z = 1.20, 
tl, = 1-821A and for 2 = 1-70, tloo = 1-818A. Since these values do not differ 
greatly from that corresponding to Z = 1.43, a range of wave-numbers are all 
subject to rapid growth at about the same time. In  such conditions it is to be 
expected that there will be considerable scatter in the wavelengths observed in 
the experiments, but that the time of the onset of instability may be well pre- 
dicted. The spectrum of the background noise in the neighbourhood of the fastest 
growing wave may have a profound influence on the observed wavelengths. 
What actually happens will be described later. 

2.4. Diffwion of vorticity in the accelerating Jtow 
Due to the presence of viscosity, the flow in the neighbourhood of the interface 
is not given by the discontinuous profile (1.2) but there exists a boundary-layer 
flow, the thickness of which grows with time. (There are similar boundary layers 
at the walls of the tube but these are not considered here.) If vl, v, are the values 
of the coefficient of kinematic viscosity in the upper and lower fluids respectively 
and ul, uz, the corresponding fluid speeds in the fluids, then it may be shown 
that, well away from the walls of the tube, 

provided that the fluid depths are equal and large in comparison with max (mit) i  
and that i=1,2 

In the experiments with a density difference of 0.22 g cc-1 described in $ 3 ,  the ratio 
(vl/v2)* (p,/p2) was estimated and found to be 1.07. 

3-2 
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If v = Q(vl + vp), an approximation to the prose at time t is 

(This has approximately the same gradient at z = 0 and the same speed for 
large 121 .) The stability of a steady profile of this type is considered in 3 2.5 to 
assess the effect of the viscous modification of the flow profile. 

2.5. The effect of a gradual velocity transition 

We now examine the stability of the steady flow of an infinite fluid with velocity 
distribution given by (2.3b) and density by (2.3a) with surface tension y at the 
density discontinuity, in order to assess the effect of the gradual transition in 
velocity near the interface resulting from the viscous diffusion of vorticity across 
the interface in the experiments. The analysis is similar to that carried out by 
Holmboe (1962) in the solution of the problem without surface tension, the only 
difference being that there is now a discontinuity in the pressure of the fluids 
across the interface and a boundary condition (2.13) is applied. An interfacial 
disturbance is found having the form 

<(x, t )  = W{al exp [ik(z - ct)]} ,  

where c is a root of a quartic equation which may be written in the form 

X ( V )  ZJ~- ( /A~+P)V~+/A~Q+SV(RV~+S)  = 0, (2.32) 

where V = C l U ,  

= ['-kd(l+tanhkd) tanhkd I" ' 1 tanh kd 
kd 

P =  1 - - +  
( kd)2 (1 + tanh kd)2 ' 

The disturbance will grow if c contains a positive imaginary part and the onset 

Suppose first that S is very small and may be neglected in (2.32) whilst p 2  
of instability is characterized by this condition on c. 

remains of order unity. Then (2.32) reduces to the form 

Xl(V) 3 v4 - (p." + p)  v2 + pu"& = 0,  (2.33) 

which has a double root v1 if xl(vl) = 0 and dxl/dv = 0 at v = vl. The condition 
for these equations to be satisfied simultaneously is 

( ,~2+P)2 = 4p2Q (2.34) 



Instability of stratified shear JEows 37 

and v: = 2p2Q/(p2+ P ) ,  if p2Q =t= 0. (Both p2 and Q are positive and non-zero 
here.) Since xl(v) = xl( -v) and dXl/dv = 0 at  v = 0, a small disturbance of the 
parameters P and Q will produce four real roots for c or two pairs of complex 
conjugate roots. Hence (2.34) is the condition for marginal stability. The solution 
of (2.34) is p = po say, where 

pi = 2Q-Pp2, / (Q2-QP).  (2.35) 

Q2-QP is always positive, as may be shown by substituting values in terms 
of kd. It was shown by Holmboe (1962) (for y = 0) that instability is for values 
of p2 in the region between the two roots of (2.35). P and Q are specified by kd, 
and the two critical roots of p2 can be found from (2.35). If we write 

where 

p2 = J' ( l+akd) ,  kd (2.36) 

the variation of the critical values of J1 (when p2 = pi) with kd for various u may 
be found. Since instability occurs in that region between the two roots of pi and 
the minimum velocity difference across the layer (2U) to give instability is given 
by the largest value of J1 (and hence the largest value of p2), the onset of in- 
stability as 2U increases is characterized by pi taking the value of the higher 
root when the positive sign is taken in (2.35). The corresponding variation of J1 
with kd for various u is shown by the curves labelled 6 = 0 in figure 5. The para- 
meter u is equal to 1/(dkJ2, where kc, given by (2.1), is the critical wave-number 
in the problem when d = 0, and the values of dkc for each u are indicated by the 
vertical arrows on the kd axis in figure 5. They lie very close to but slightly above 
the values of kd for which J1 has a maximum value and the critical wave-number 
is therefore slightly overestimated by (2.1) when 6 is very small. The values 
of the J1 based on the assumption that the velocity difference across the interface 
is given by A Q  in (2.2) (the critical difference as d tends to zero) are 

J1( = J1,) = (1 - 62)/(2a*) 

and this tends to  1/(2a)) as 6 tends to zero. These values of J1 for various (T are 
marked on the J1 axis in figure 5 by horizontal arrows and are seen to lie above 
the maximum values given by the curves. Hence the velocity differences required 
for marginal stability are increased by the presence of a gradual transition in 
velocity a t  the interface. 

When S is small compared with unity, but not negligible, we must reconsider 
the solution by (2.32). Suppose x = 0 has a double root 02. Then dx /dv  = 0 
at v = v2 and 

x(v)--- = --( p2 + P )  a% + p2Q + &Sv2( Rvi + 35) 
4 dv 

= 0 at  v = v2. 
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Hence 2 -  2 + p ( l + 4  ( = V A  1 + 4 ) ,  (2.37) 2u"Q va - ___ 

where 

neglecting higher-order terms in 6. 

u = l ,  

U= 5,  

u=10, 
0=20. 

I " - - "  I v-l v - U.J 
fJ=20 u=5 

(2.38) 

fJ=20 u=5 

kd 

FIGURE 5. The variation of J ,  with kd for various T and for 6 = 0, S = 0.1. 
The arrows marked on the axes are explained in the text. 

Substituting now for v2 from (2.37) into (2.32) and again neglecting second- 

p2 = A(l+ %), order terms in 6 we find 

where 
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and ,uo is a root of (2.34). As before the largest root of (2.34) is that which charac- 
terizes the conditions of critical velocity difference. The stability curves for 
6 = 0.1 are also shown in figure 5 .  The critical wave-numbers are still well pre- 
dicted by (2.1) but the velocity difference for marginal stability is underestimated 
by (2.2); the smaller is (T, the greater is the underestimate. 

In  the experiments the values of 6 lie between 0 and 0.125 and r based on 
a value of d = + ( ~ v t ) *  (see (2.31)), has a value of about 25/t (where t is in seconds). 
At the onset of instability, t varies between 0-5 and 3.0sec and so the critical 
velocity difference, and therefore the time of onset of instability, may be under- 
estimated by as much as 10 yo by the theory which supposes that an abrupt 
transition in velocity occurs at the interface. 

3. Experiments and observations 
3.1 . Experiments 

The apparatus and experimental techniques have already been described in I. 
The tube used is made of Perspex and is 183 om in length, 3 cm in depth and 10 cm 
in width. The experiments have the advantage of avoiding the inlet disturbances 
which may occur in continuous flow experiments; also the velocity distribution 
is easily predicted. They suffer from the disadvantage that it is difficult to mount 
measuring probes in the flow without causing significant disturbances, since the 
flow is not unidirectional past a probe fixed in the tube and disturbances to the 
flow carried 'downstream' by the fluid in the neighbourhood of the probe may 
be carried 'upstream' in the return flow as they spread. Moreover, very small 
probes appear to cause large disturbances (see I, p. 701). 

The fluids used in these experiments were water and a lighter mixture of 
carbon tetrachloride and commercial paraffin (kerosene) commonly used for 
paraffin heaters. The tube was completely filled with the fluids, which were of 
equal depths, 1.5 cm, and after allowing the fluids to settle, one end was sharply 
raised and the resulting motion of the interface recorded on cine film running 
at  about 70frames/sec. The film speed was found by filming a stop watch, and 
the times in the experiments assessed by counting the film frames. The tube 
was filmed directly from the side and indirectly from above by means of a mirror 
set above the tube. The angle of tilt of the tube was varied between 4 and 12". 
For smaller angles the time before instability occurred was rather long, whilst 
for larger angles instability occurred so rapidly that it was difficult to measure 
the time of onset with any accuracy. The times of the onset of instability were 
taken to be the sum of half the time taken to tilt the tube (usually about isec) 
and the time measured from the instant the tube reaches its tilted position until 
that at  which instability could first be detected (this is the time t,, in I). The 
first signs that waves were growing was the appearance of transverse bands of 
light across the tube viewed from above through the mirror. Soon afterwards 
the waves were seen to grow with the same periodicity as the bands. The bands 
confirmed the two-dimensional nature of the waves. The formation of the bands 
before the waves could be seen directly was probably due to the refraction of 
light, which provided illumination from the side, by very small wave slopes. The 
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wavelengths were measured from the projected cine film when the wave ampli- 
tudes were quite large. No change in wavelengths was observed between the time 
that the bands were first noticed and the time when the waves reached their 
maximum amplitudes. 

The surface tension at  the interface is the quantity most difficult to measure. 
The ‘drop’ method was used with corrections made using the data to be found 
in Davies & Rideal (1963, p. 45). No method of cleaning the interface in the 
experiments was used, but care was taken to keep the liquids as clean as possible. 
The measured values of interfacial tension, y, are probably good to within 10 yo, 
and fortunately y appears in expressions having a small fractional exponent in 
the theory, and thus the errors are not serious. 

3.2. The onset of instability and the wave-number of the disturbance 

The times at  which instability was first observed and those at which it is predicted 
to occur are compared in figure 6 .  The points marked indicate the observed times 
and the corresponding predicted times based on (2.27) with 1 given by (2.29) ( r  is 
sufficiently large for (2.29) to be a very good approximation). The horizontal 
lines indicate the scatter in the observed values. The predictions are good at  small 
times, corresponding to large angles of tilt, but are lower than the observations 
at small angles of tilt. Two corrections have been applied to the predicted values 
and the result of these corrections is to raise the predicted values for the small 
angles of tilt to the points indicated by the arrows in figure 6. (The corrections 
are insignificant for large angles of tilt.) The first correction is for the effect of 
viscosity at  the interface described in 3 2.5, which raises the predicted value of the 
critical velocity difference, and therefore the time at which instability occurs. 
The second correction is for the value of the wave-number. The predicted values 
of I in the experiments for large r have a linear dependence on B and therefore 
on (tana)) (see (2.29)), and the results for the measured wave-numbers are 
presented on a plot of ( 1  - 1) ( = (k/k,) - 1) against (tan a)* in figure 7. One root- 
mean-square deviation in ( I -  1) is indicated by the horizontal lines. The wave- 
numbers increase with (tana)3 as predicted, but are well below the predicted 
values falling for the most part near k,. The probable errors in the measurements 
are not sufficient to account for this. It appears that the wave motion may 
‘lock in’ to a wave-number near k, at an early stage of the development of the 
waves and that the larger wave-numbers favoured by the acceleration are never 
able to grow as rapidly as predicted by the theory.? The value of I which is 
observed is thus below that value which minimizes t,,, (see ( 2 . 2 7 ) ) ,  and thus 
slightly higher values of the predicted time of onset of instability corresponding to 
the observed values of I are appropriate. This is the second correction made to the 
predicted values of the time at which instability occurs. 

The corrected predictions still fall below the observed times and an additional 

t The wave-numbers observed are slightly greater than half those predicted, and it is 
possible that, rather than ‘locking in’ to a wave-number near k,, an interaction process 
favouring waves of twice the predicted wavelength operates in the very early stages of 
growth, similar to that observed for miscible fluids at a late stage in the growth described 
in I (see p. 700). 
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factor may be that, because there is a decrease in the observed wave-numbers 
as the angle of tilt, a, is decreased (figure 7),  the slope of the disturbances a t  
comparable amplitudes decreases its a decreases. Since the waves are first 
observed by the refraction of light, caused by the slopes of the waves, it seems 
probable that waves growing a t  small a will be detected later relative to the 
predicted time than waves at  a larger a. This view is supported by measurements 
made of the growth of the waves. 

2.5 

2.0 

1 5 

1.0 

0.’ 

0.5 ~ 1.0 I .5 2.0 2.5 3-0 

FIGURE 6. Comparison of observed and predicted times of onset of instability. The times 
predicted on the basis of (2.27) and (2.29) are marked with 0, corresponding to 

(pz -p l ) / (p l+pz )  = 0.124, y = 39.9 dynes cm-l, 

or corresponding to 

(pa -p l ) / (p l+pz )  = 0.074, y = 33.4 dynes cm-l. 

The arrows mark the corrected predictions as explained in the text. The horizontal lines 
indicate the scatter of observations about the points which each represent the mean of 
three experimental runs. 

3.3. The growth of waves 
The development of the waves and their shape is shown in figure 8 (plate 1). 
The growth of the waves has been examined by measuring the wave heights from 
the projected image of the waves from the cine film. Accurate measurement was 
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FIGURE 7. The variation of I- 1 ( = (k-k,)/k,) with (tan a)* for 

(a) (pz -p l ) / (p l+pz )  = 0.124, y = 39.9 dynes em-l 

and (b) (pz -p l ) / (p l+pa)  = 0.074, y = 33.4 dynes cm-l. 

The points indicate the mean observed values and the horizontal lines indicate one root- 
mean-square deviation from the mean. 
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not possible during the early part of the wave growth when the wave slopes? were 
less than 0.1 and the wave amplitudes less than 1 mm, and only the growth of the 
wave crest has been examined since the wave trough was obscured during the 
early parts of the growth by the meniscus at  the front of the tank. The observa- 
tions of the position of the trough in the developed wave for 

(Pz-P1)I(P1 +Pz) = 0.124 

indicate that there was no difference which could be measured between the crest 
height above, and trough depth below, the initial position of the interface, and 
that the wave profile was almost symmetrical about the initial position of the 
interface. Between slopes of 0.1 and 0.2 the growth-rate gradually increased. 
A slope of 0.2 was reached at  a time of about l .Zt , ,  where t ,  is the time at  which 
instability occurred, and thereafter an almost constant growth-rate was main- 
tained up to wave slopes of 1.2 (reached at  about 1-43,)  when small-scale irregu- 
larities became evident in the wave profile and the rate of growth decreased. 
At these large slopes the effect of the boundaries of the tube was probably con- 
siderable, the wave filling about Q or more of the total depth of the tube. The value 
of the constant growth-rate increased as the angle of tilt, a, increased (and there- 
fore as tl decreased) and table 1 shows some of the measured values during one 
set of experiments. It is noticed that the time at  which the wave slope reaches 
a particular value is more nearly a constant multiple of the predicted value of t, 
rather than the observed value oft,, and this suggests that perhaps the trend 
of points in figure 6 to values of greater than those predicted is partly the result 
of errors made in the determination of the time of onset of instability. 

sin u 

0.072 
0.093 
0-127 
0.147 
0.180 

( sec-1) 
5.1 
6.6 
7-1 
8-4 

12.8 

TABLE 1. The rate of change of wave slope, d/dt(ab) during the period of constant growth- 
rate at different angles of tilt, a, for (p2-pI)/(pl+pz) = 0.124 and y = 39.9 dynes om-' 

By observing the points at  which the wave profile intersected the initial position 
of the interface, a small mean wave motion down the slope was noticed. The 
observations were scattered and not sufficient to detect any variation of the 
wave speed with a or at  different wave slopes. The mean speed was 2.6 cm sec-l 
for S = (p2-p1)/(p1+pz) = 0.124, sina between 0.072 and 0.180, and wave slopes 
between 0.2 and 1.2. From (2.15), (2.17) thepredicted phasespeedof the wavesis 

c = 2Pt/k = Pgsinat 

t The wave slope is taken as ak, where a is the height of the crest above the initial 
position of the interface. 
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in a direction down the slope. For sin a = 0.127, 6 = 0.124, and t = 1.24sec 
(corresponding to the time at which a wave slope of 0.7 was reached in the experi- 
ments with those values of sin a and 8) we find that c = 2-38 em sec-l, in good 
agreement with the observed mean value. 

At times later than 1.45t1, the interface became very irregular, sometimes being 
broken and drops of one fluid being produced in the other,? but frequently it 
eventually settled to a pattern containing waves of length about three times 
those of the original disturbance with smaller irregular waves superimposed. 

4. Final remarks 
The experiments made in the tilted tube provide the possibility of testing some 

of the theoretical predictions which have been made about the onset of turbulence 
in a stratified shear flow, and serve to emphasize the importance of the study of 
time-dependent flows. 

Quite good agreement is found between the times at  which instability is first 
observed in the experiments, and those predicted by a theory based on Kelvin- 
Helmholtz instability. The observed wave-numbers show the predicted increase 
with the angle of tilt of the tube resulting from the effects of the accelerating flow, 
but are somewhat smaller than the predicted values. This is not entirely surprising 
in view of the reservations about the accuracy of the predictions made in 5 2.3, 
and it is possible that the effects of finite amplitude, neglected in this paper, 
become important at an early stage of wave development. The possibility of 
Tollmien-Schlichting instability at the interface has not been discussed. The 
agreement found between the observed and predicted times suggests that 
Kelvin-Helmholtz instability plays a part in the wave development. Whether 
or not it is a dominant role is not clear. 

Further experiments have been made on the instability of two miscible fluids 
with a diffuse interface, and the results compare favourably with theory; these 
will be published later. 

I am grateful for the assistance of Mr Richard Soulsby and Mr Paul Hutt in 
the making of the experiments, and to Mr Arnold Madgwick for his advice and 
help in photography. 

Appendix A. Disturbances in the accelerating flow 
We shall suppose that = q(t)  eikx and that 

r)l = $l(t) cosh k(z  - h) eikz, = 3h2(t) cosh k(x + h2) eiks, 

to satisfy (2.8) and (2.10)) where the real parts of terms appearing on the right- 
hand sides are to be taken. (For a random initial disturbance a sum of terms like 
those appearing on the right-hand sides may be taken, for various wave-numbers 
k ,  in the usual way.) 

t These drops were typically about 5 mm in diameter or less. 
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At the interface, the linearized forms of (2.11) become 

and dq ik(p2 - pl) g sin a hl t -- ~ y = k$z sinh kh,, 
dt Plh2 + P2hl 

45 

whilst (2.14) becomes 

-- a'' oosh kh, eikx - gx sin a - gy cos a eikx] (i =!= j) (A 3) 
at 

evaluated at  z = 0. Now from (2.13), a t  the interface, 

(A 4) 
a25 

P1 -P2 = YIR = Y 

to a first approximation. Hence substituting from (A 3) and equating coefficients 

Wl 
at P1h2 + P2hl 

(Pz - P1) kgt sin a p - cosh khl -p2 cosh kh, + i 

where Ti = tanhkhi (i = l , Z ) ,  

and if now 7 = N(7)  eipta, 

where 

and 

the equation reduces to the form 
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Appendix B 
Given a three-dimensional disturbance to the basic flow, it may be shown that 

there is a two-dimensional disturbance in the same flow which will increase its 
amplitude by (say) 100 times more rapidly than will the three-dimensional 
disturbance. This is an extension of the well-known Squires theorem, and leads 
us to expect that the onset of instability will be characterized by two-dimensional 
disturbances, as is indeed observed. The proof of this result is outlined below in 
the case when h, = It,. 

For a three-dimensional disturbance the displacement of the interface t ( x ,  y, t) 
may be written 

t lx ,  Y, t )  = =ww1) exp W 1 x  + k2Y + /31t2)1), 

where 

2 
and 

N(T~)  satisfies the equation 

p, = $kl( P -P ’) gsina. 
P1 + P2 

(a1 + $72,) N = 0, 
d2N ~- 
a7; 

a = -- Yk2 + (P2 -PI) g ‘OS a tanh kh, where 
ki49sina(P2 - P I )  J(PiP2) 

and 

(These equations replace equations (2.15)-(2.19).) 

k2 = k; + k:. 

The time, t&& at  which 100-fold growth now occurs is given by 

B 

I” 
[ [ (E) (1 + 12)  tanh Zr]’ + 

G 7 t 2  [12 r$) (1 + Z2) tanh Zr 
t& = A 

where A ,  B, 1, r are as given before; see (2.27). For a given flow t#, decreases as 
k, increases, and has its smallest value when k2, = k2 and k, = 0. Hence the 
disturbance which is amplified most rapidly is two-dimensional. 

Appendix C. Comparison with a quasi-steady approximation 
We wish to compare the growth of disturbances as predicted by solutions of 

(2.18) with that predicted by (2.5) when AU has its instantaneous value at time t 
(the quasi-static approximation). When 

AU = 2(P2-P,)gsinat 
P1+ Pz 
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(the difference Ul-U, in (1.2)), the part of p in (2.5) not included in the curly 
brackets is, 

ik(p, - p1)2 gt sin a 

(P1+ PA2 
9 

which is equal to  2/3t = (kc),  when /3 is given by (2.17) with h, = h,. Hence the 
quasi-steady approximation predicts correctly the phase speed of the disturbance. 

The expression in the curly brackets in (2.5) becomes 

where we have replaced g in (2.5) by g cos a corresponding to the reduced effects 
of gravity, and thus the amplitude 171 of the disturbance at the interface in the 
quasi-static approximation is given by 

Irl 
The solution of (C 1) is 

exp (f [a + f] ") 
1111 = lrol (&+J- (1.3)"' 

where 171 = lrol when r = 2J( - a). With the approximation 

4 J ( - a ) ~ ~ - 2 J ( - a )  > 0, (C 2) 

Irl = lrol""P(&%, 
where s1 = ( -a)* [r - 2J( -a) ] ,  and tenfold growth occurs at  s1 = 2.28, 100-fold 
growth at s1 = 3.73. s1 is equal to s and the growth is but slightly more rapid 
than predicted by solutions of (2.18) (see (2.21) and following) which had 100-fold 
growth at s = 3-83. 

For very large values of r2/(  - 4a), solutions of (2.18) are 

. \ I  

whilst solutions of (C 1) are . ,  
2 exp(r2/4) 

171 A(;) r-a * 

Thus the quasi-static approximation gives somewhat larger amplitudes than 
those predicted by the exact theory. 

Detailed comparison of the solutions of (2.18) and (G 1) shows that the time of 
100-fold growth is underestimated but is predicted by the quasi-static approxi- 
mation to better than 10 yo even without the approximation (C 2). 



48 8. A .  Thorpe 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGTJN, A. 1965 Handbook of Mathematical Functions. New York: 
Dover. 

BENJAMIN, T. B. 1960 J .  Fluid Meoh. 9, 513. 
BENJAMIN, T. B. 1963 J. FZuid Mech. 16, 436. 
DATES, J. T. & RIDEAL, E. K. 1963 Interfacial Phenomena, 2nd ed. New York: Academic- 
HOLMBOE, J. 1962 Geofys. Public. 24, 67. 
KELVIN, LORD 1871 Phil. Mag. 42, 368, and Mathematical and Physical Papers 4, 76. 
LANDAHL, M. T. 1962 J.  Fluid Meoh. 13, 609. 
LOCK, R. C. 1954 Prm. Camb. Phil. SOC. 50, 105. 
SCHLICHTINQ, H. 1955 Boundary Layer Theory. London: Pergamon. 
THORPE, S. A. 1968 J .  Fluid Mech. 32, 693. 



Journal of Fluid Mechanics, Vol. 39, part 1 Plate 1 

FIGURE 8. The growth of waves. The photographs arc separated by 0.059 see, the first 
(a)  being 1.88 see after the tube had been tilted. 

(pz-pl ) / (pl+pz)  = 0.124, 
The lower scale is in inches. 

THORPE (F5cing p. 48) 

y = 39.9 dynes cm-', sina = 0.072. 




